Rods and cones differ in a number of ways. The most important difference is in their relative sensitivity: rods are sensitive to very dim light, cones require much brighter light. I have already described the differences in their distribution throughout the retina, the most notable being the absence of rods in the fovea. They differ in shape: rods are long and slender; cones are short and tapered. Both rods and cones contain light- sensitive pigments. All rods have the same pigment; cones are of three types, each type containing a different visual pigment. The four pigments are sensitive to different wavelengths of light, and in the case of the cones these differences form the basis of our color vision. The receptors respond to light through a process called bleaching. In this process a molecule of visual pigment absorbs a photon, or single package, of visible light and is thereby chemically changed into another compound that absorbs light less well, or perhaps differs in its wavelength sensitivity. In virtually all animals, from insects to humans and even in some bacteria, this receptor pigment consists of a protein coupled to a small molecule related to vitamin A, which is the part that is chemically transformed by light. Thanks largely to the work in the 1950s of George Wald at Harvard, we now know a lot about the chemistry of bleaching and the subsequent reconstitution of visual pigments. Most ordinary sensory receptors--chemical, thermal, or mechanical--are depolarized in response to the appropriate stimulus, just as nerves become depolarized in response to an excitatory stimulus; the depolarization leads to release of transmitter at the axon terminals. (Often, as in visual receptors, no impulse occurs, probably because the axon is very short.) Light receptors in invertebrates, from barnacles to insects, behave in this way, and up to 1964 it was assumed that a similar mechanism-- depolarization in response to light--would hold for vertebrate rods and cones.